## Chapel Creek Stream Restoration Project Orange County, North Carolina EEP Project #77



MY-01 Monitoring Report - Final Data Collected: September 2009 Submitted: December 1, 2009



Prepared for: North Carolina Department of Environment and Natural Resources Ecosystem Enhancement Program Parker Lincoln Building 2728 Capital Boulevard, Suite 1H-103 Raleigh, NC 27606

# Chapel Creek Stream Restoration EEP Project #77 Chapel Hill, North Carolina Orange County

MY-01 Monitoring Report - Final Prepared By:



Ward Consulting Engineers, P.C. Project Manager: Becky Ward, P.E. 8386 Six Forks Road, Suite 101 Raleigh, NC 27615-5088 Ph: 919-870-0526 Fax: 919-870-5359

#### **TABLE OF CONTENTS**

| I.   | Executive Summary          | . 1 |
|------|----------------------------|-----|
| II.  | Methodology                | . 2 |
| A    | . Vegetation Methodologies | . 2 |
| В    | Stream Methodologies       | . 2 |
| III. | References                 | . 3 |

#### APPENDICES

| Appendix A. General Figures and Plan Views                | 4    |
|-----------------------------------------------------------|------|
| Figure 1A. Vicinity Map                                   | 5    |
| Figure 2. Consolidated Current Condition Plan View        | 6    |
| Appendix B. General Projects Tables                       | 7    |
| Table 1. Project Restoration Components                   | 8    |
| Table 2. Project Activity and Reporting History           | 8    |
| Table 3. Project Contacts Table                           | 9    |
| Table 4. Project Attribute Table                          | 10   |
| Appendix C. Vegetation Assessment Data                    | . 11 |
| Photo 1. Vegetation Plot 1                                | 12   |
| Photo 2. Vegetation Plot 2                                | 12   |
| Photo 3. Vegetation Plot 3                                | 13   |
| Photo 4. Vegetation Plot 4                                | 13   |
| Table 5. Stem Count Total and Planted by Plot and Species | .14  |
| Appendix D. Stream Assessment Data                        | . 15 |
| Photo 5. Looking downstream at XS-1                       | 16   |
| Photo 6. Looking downstream at XS-2                       | 16   |
| Photo 7. Looking downstream at XS-3                       | 17   |
| Photo 8. Looking downstream at XS-4                       | .17  |
| Photo 9. Looking downstream at XS-5                       | 18   |
| Table 6. Visual Morphological Stability Assessment        | . 19 |
| Table 7. Verification of Bankfull Events                  | . 20 |
| Figure 3. Cross-Section 1                                 | 21   |
| Figure 4. Cross-Section 2                                 | 22   |
| Figure 5. Cross-Section 3                                 | 23   |
| Figure 6. Cross-Section 4                                 | . 24 |
| Figure 7. Cross-Section 5                                 | . 25 |
| Figure 8. Longitudinal Profile                            | . 26 |
| Figure 9. Pebble Count Plots – XS-1                       | . 27 |
| Figure 10. Pebble Count Plots – XS-2                      | . 28 |
| Figure 11. Pebble Count Plots – XS-4                      | . 29 |
| Figure 12. Pebble Count Plots – XS-5                      | . 29 |
|                                                           |      |

## I. Executive Summary

The North Carolina Ecosystem Enhancement Program (EEP) has completed a stream restoration project along approximately 1,350 linear feet of Chapel Creek, located on University of North Carolina property in Chapel Hill, Orange County, North Carolina. The project is located in the Morgan Creek Local Watershed planning area, within the 14-digit HUC 03030002060080. The drainage area for Chapel Creek is approximately 0.42 square miles at the downstream limit of the project where a drainage channel through the A.E. Finley Golf Course flows into Chapel Creek. The land use in the watershed consists of University of North Carolina facilities, single family residential, elementary schools, roadways, and forested land. The Morgan Creek LWP noted water quality degradation and impaired biological community in the watershed and identified major watershed stressors as: streambank erosion, excess stormwater runoff, and disturbed riparian buffers. The goals of the restoration project are to improve water quality in Chapel Creek and the Cape Fear river basin by:

- Channel restoration of pattern, profile, and dimension for approximately 960 linear feet of Chapel Creek.
- Channel enhancement/stabilization for approximately 330 feet with a Priority Two restoration approach, bankfull bench and stream bank repairs.
- Restore reach to a stable stream channel, capable of transporting flows and sediment load efficiently.
- Improve aquatic habitat by planting trees along the banks in the cleared section to increase shade and adding more sinuosity to create more pool and riffle sections.
- Reduce sediment inputs to the stream from bank erosion by re-vegetating the banks.

The new CVS-EEP protocol was not administered for monitoring year one. Four vegetation monitoring plots were monitored and only planted stems were counted to monitor success criteria. Currently, 769 planted stems per acre are succeeding within the conservation easement. The success criteria of the planted woody species are the survival of 320 stems/acre after monitoring year three (MY3). A mortality rate of ten percent will be allowed after MY4 (288 stems/acre), with another ten percent mortality rate allowed after MY5 requiring a minimum of 260 stems/acre. Herbaceous species such as dog fennel (*Eupatorium capillifolium*), horseweed (*Erigeron canadensis*), tickseed (*Bidens* sp.), seedbox (*Ludwigia* sp.), smartweed (*Persicaria* sp.), common rush (*Juncus* sp.), sedges (*Carex* sp.), and various grasses, are present throughout the conservation easement. Woody species observed that were not planted include easterm red cedar (*Juniperus virginiana*), loblolly pine (*Pinus taeda*), silverling (*Baccharis halimifolia*), sycamore (*Platanus occidentalis*), green ash (*Fraxinus pennsylvanica*), tulip poplar (*Liriodendron tulipifera*), sweetgum (*Liquidambar styraciflua*), hickory (*Carya* sp.), hazelnut (*Corylus americana*), willow oak (*Quercus phellos*), black willow (*Salix nigra*), and tag alder (*Alnus serrulata*).

Invasive exotics observed include Japanese honeysuckle (*Lonicera japonica*), Japanese stiltgrass (*Microstegium vimineum*), autumn olive (*Elaeagnus umbellata*), multiflora rose (*Rosa multiflora*), and Chinese privet (*Ligustrum sinense*). According to the NC Native Plant Society all of these species are classified as Rank 1 "Severe Threat" species which is defined as exotic plant species that have invasive characteristics and spread readily into native plant communities,

displacing native vegetation. Although these species have been given this rank, the functionality of the project is not expected to be impaired significantly. The vegetation problem areas consist of invasive exotic species present within the conservation easement. See Table - for vegetation problem area descriptions and figure – for their locations. See section - of Appendix - for representative photos of the vegetation problem areas observed within the conservation easement of Chapel Creek.

The channel and banks of the restoration project are stable when compared to MY-00. There are not any negligible changes in pattern, profile or dimension between the monitoring years. The riffle pebble counts are trending slightly finer, but this is to be expected as the larger substrate in constructed riffles picks up some sediment deposition. A few problem areas were noted in the banks, but these do not appear to be further degrading and will likely continue to stabilize as vegetation is established.

Summary information/data related to the occurrence of items and statistics related to performance of various project and monitoring elements, can be found in the tables and figures in the report appendices. Narrative background and supporting information formally found in these reports can be found in the mitigation and restoration plan documents available on EEP's website. All raw data supporting the tables and figures in the appendices is available from EEP upon request.

## II. Methodology

Methodologies follow EEP monitoring report template Version 1.2.1 (06/01/09) and guidelines (Lee et al 2008). Photos were taken with a digital camera. A Trimble Geo XT handheld unit with sub-meter accuracy was used to collect vegetation monitoring plot origins, and problem area locations. Cross sectional and longitudinal surveys were conducted using total station survey equipment. Data was entered into AutoCAD Civil3D to obtain dimensions of the cross sections and parameters applicable to the longitudinal profile. Reports were then generated to display summaries of the stream survey.

### A. Vegetation Methodologies

A total of four 100m<sup>2</sup> vegetation monitoring plots were established during as built data collection. VP1, VP3, and VP4 are 20m x 5m plots and VP2 is a 10m x 10m plot. Planted stems within each plot were identified and counted to determine the number of stems/acre. Data collected for these plots are in Appendix C. The CVS-EEP protocol was not implemented for this project

### **B. Stream Methodologies**

Stream profile and cross-sections were surveyed using total station equipment and methods. The survey data was plotted using AutoCAD Civil3D. The longitudinal profile was generated using the MY-02 alignment. Cross sectional data was extracted based on a linear alignment between the end pins.

## **III. References**

Miller, James H. 2003. <u>Nonnative invasive plants of southern forests: a field guide for</u> <u>identification and control.</u> Gen. Tech. Rep. SRS–62. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 93 p.

Weakley, Alan (2006). *Flora of the Carolinas, Virginia, Georgia, and Surrounding Areas*. http://www.herbarium.unc.edu/flora.htm.

Appendix A. General Figures and Plan Views





**Appendix B. General Projects Tables** 

|                                                                                                  |                  | 1                        |            |                             |                     |                     |                  |                                                |  |  |  |
|--------------------------------------------------------------------------------------------------|------------------|--------------------------|------------|-----------------------------|---------------------|---------------------|------------------|------------------------------------------------|--|--|--|
| Table 1. Project Restoration Components           Chapel Creek Stream Restoration-Project No. 77 |                  |                          |            |                             |                     |                     |                  |                                                |  |  |  |
| Project<br>Segment<br>Reach I.D.                                                                 | Existing<br>Feet | Mitigation<br>Type       | Approach   | Linear<br>Feet              | Mitigation<br>Ratio | Mitigation<br>Units | Stationing       | Comments                                       |  |  |  |
| Reach I                                                                                          | 957              | Restoration              | Priority 1 | 961                         | 1                   | 961                 | 0+00 to<br>9+94  | Includes 900 If of<br>channel relocation       |  |  |  |
| Reach II                                                                                         | 356              | Enhancement<br>II        | Priority 3 | 330                         | 1.5                 | 220                 | 9+94 to<br>13+50 | Instream Structure<br>and Vegetated<br>Buffers |  |  |  |
| Mitigation Unit Summations                                                                       |                  |                          |            |                             |                     |                     |                  |                                                |  |  |  |
| Stream (If)                                                                                      | Ripari           | Riparian Wetland<br>(Ac) |            | Nonriparian<br>Wetland (Ac) |                     | Total Wetland(Ac)   |                  | Comment                                        |  |  |  |
| 1181                                                                                             | 1181 0           |                          |            |                             | (                   | 0                   | 1.2              |                                                |  |  |  |

#### Table 1. Project Restoration Components

#### Table 2. Project Activity and Reporting History

| Table 2. Project Activity and Reporting HistoryChapel Creek Stream Restoration-Project No. 77 |                             |                           |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------|-----------------------------|---------------------------|--|--|--|--|--|--|
| Activity or Reporting                                                                         | Data Collection<br>Complete | Actual Completion<br>Date |  |  |  |  |  |  |
| Restoration Plan                                                                              |                             | Aug-06                    |  |  |  |  |  |  |
| Final Design – Construction Plans                                                             |                             | Jun-07                    |  |  |  |  |  |  |
| Construction                                                                                  |                             | Jul-08                    |  |  |  |  |  |  |
| Temporary S&E mix applied to entire project area                                              |                             | Jul-08                    |  |  |  |  |  |  |
| Permanent seed mix applied to enitre project area                                             |                             | Jul-08                    |  |  |  |  |  |  |
| Repairs to stream due to damages from storm events                                            |                             | Mar-09                    |  |  |  |  |  |  |
| Temporary S&E mix applied to area disturbed by repairs                                        |                             | Mar-09                    |  |  |  |  |  |  |
| Permanent seed mix applied to area disturbed by repairs                                       |                             | Mar-09                    |  |  |  |  |  |  |
| Containerized and B&B plantings for entire reach                                              |                             | Mar-09                    |  |  |  |  |  |  |
| Mitigation Plan / As-built (Year 0 Monitoring – baseline)                                     | Mar-09                      | Mar-09                    |  |  |  |  |  |  |
| Year 1 Monitoring                                                                             | Sept-09                     | Nov-09                    |  |  |  |  |  |  |
| Year 2 Monitoring                                                                             |                             |                           |  |  |  |  |  |  |
| Year 3 Monitoring                                                                             |                             |                           |  |  |  |  |  |  |
| Year 4 Monitoring                                                                             |                             |                           |  |  |  |  |  |  |
| Year 5 Monitoring                                                                             |                             |                           |  |  |  |  |  |  |
| Year 5+ Monitoring                                                                            |                             |                           |  |  |  |  |  |  |

#### Table 3. Project Contacts Table

| Table 3. Project Contacts Table |                                                |  |  |  |  |  |  |
|---------------------------------|------------------------------------------------|--|--|--|--|--|--|
| Chapel Creek St                 | ream Restoration - Project No. 77              |  |  |  |  |  |  |
| Designer                        | Ward Consulting Engineers, P.C.                |  |  |  |  |  |  |
|                                 | 8386 Six Forks Road Suite 101                  |  |  |  |  |  |  |
|                                 | Raleigh, NC 27615-5088                         |  |  |  |  |  |  |
| Primary project design POC      | Becky Ward 919-870-0526                        |  |  |  |  |  |  |
| Construction Contractor         | River Works, Inc.                              |  |  |  |  |  |  |
|                                 | 800 Regency Parkway, Suite 200                 |  |  |  |  |  |  |
|                                 | Cary, NC 27518                                 |  |  |  |  |  |  |
| Construction contractor POC     | Will Pederson 919-459-9001                     |  |  |  |  |  |  |
| Survey Contractor               | Level Cross Surveying, PLLC (all surveying)    |  |  |  |  |  |  |
|                                 | 668 Marsh County Lane                          |  |  |  |  |  |  |
|                                 | Randleman, NC 27317                            |  |  |  |  |  |  |
| Survey contractor POC           | Sherie Willard 336-495-1713                    |  |  |  |  |  |  |
| Planting Contractor             | River Works, Inc.                              |  |  |  |  |  |  |
|                                 | 800 Regency Parkway, Suite 200                 |  |  |  |  |  |  |
|                                 | Cary, NC 27518                                 |  |  |  |  |  |  |
| Planting contractor POC         | Will Pederson 919-459-9001                     |  |  |  |  |  |  |
| Seeding Contractor              | River Works, Inc.                              |  |  |  |  |  |  |
|                                 | 800 Regency Parkway, Suite 200                 |  |  |  |  |  |  |
|                                 | Cary, NC 27518                                 |  |  |  |  |  |  |
| Contractor point of contact     | Will Pederson 919-459-9001                     |  |  |  |  |  |  |
| Seed Mix Sources                | Green Resource 336-855-6363                    |  |  |  |  |  |  |
| Nursery Stock Suppliers         | Mellow Marsh Farm, Inc. 919-742-1200           |  |  |  |  |  |  |
|                                 | Cure Nursery 919-542-6186                      |  |  |  |  |  |  |
| Monitoring Performers           | Ward Consulting Engineers, P.C.                |  |  |  |  |  |  |
|                                 | 8386 Six Forks Road Suite 101                  |  |  |  |  |  |  |
|                                 | Raleigh, NC 27615-5088                         |  |  |  |  |  |  |
| Stream Monitoring POC           | Robert Langager 919-870-0526                   |  |  |  |  |  |  |
| Vegetation Monitoring POC       | Chris Sheats - The Catena Group - 919-732-1300 |  |  |  |  |  |  |

| Table 4. | Project | Attribute | Table |
|----------|---------|-----------|-------|
|----------|---------|-----------|-------|

| Table 4. Project Background Table<br>Chapel Creek Stream Restoration Site-Project No. 77 |                           |  |  |  |  |  |  |
|------------------------------------------------------------------------------------------|---------------------------|--|--|--|--|--|--|
| Project County                                                                           | Orange                    |  |  |  |  |  |  |
| Drainage Area                                                                            | 0.42 square miles         |  |  |  |  |  |  |
| Drainage impervious surface cover estimate (%)                                           | < 5%                      |  |  |  |  |  |  |
| Stream Order                                                                             | 2                         |  |  |  |  |  |  |
| Physiographic Region                                                                     | Piedmont (Triassic Basin) |  |  |  |  |  |  |
| Ecoregion                                                                                | Central Piedmont          |  |  |  |  |  |  |
| Rosgen Classification of As-Built                                                        | C4                        |  |  |  |  |  |  |
| Cowardin Classification                                                                  | Riverine                  |  |  |  |  |  |  |
| Dominant Soil Types                                                                      | Chewacla                  |  |  |  |  |  |  |
| Reference Site ID                                                                        | Cabin Branch              |  |  |  |  |  |  |
| USGS HUC for Project                                                                     | 03030002                  |  |  |  |  |  |  |
| USGS HUC for Reference                                                                   | 03020201                  |  |  |  |  |  |  |
| NCDWQ Sub-basin for Project                                                              | 03-06-06                  |  |  |  |  |  |  |
| NCDWQ Sub-basin for Reference Reach                                                      | 03-04-01                  |  |  |  |  |  |  |
| NCDWQ Classification for Project                                                         | WS-IV;NSW                 |  |  |  |  |  |  |
| NCDWQ Classification for Reference                                                       | WS-IV;NSW                 |  |  |  |  |  |  |
| Is any portion of any project segment 303D listed?                                       | No                        |  |  |  |  |  |  |
| Is any portion of any project segment upstream of a 303D listed segment?                 | Yes                       |  |  |  |  |  |  |
| Reasons for 303D listing or stressor                                                     | Standard Violation        |  |  |  |  |  |  |
| % of project easement fenced                                                             | 0%                        |  |  |  |  |  |  |

Appendix C. Vegetation Assessment Data

## **Vegetation Monitoring Plots Photos**



Photo 1. Vegetation Plot 1



Photo 2. Vegetation Plot 2

Chapel Creek Stream Restoration NCEEP Project number: 77 Ward Consulting Engineers, P.C. Year 1 Monitoring Report-FINAL Year 1 of 5 December 2009



Photo 3. Vegetation Plot 3



Photo 4. Vegetation Plot 4

Chapel Creek Stream Restoration NCEEP Project number: 77 Ward Consulting Engineers, P.C.

| Scientific Name           | Common Nama          |    | Plo | Tatal |    |    |  |
|---------------------------|----------------------|----|-----|-------|----|----|--|
| Scientific Name           | Common Name          | 1  | 2   | 3     | 4  |    |  |
| Magnolia virginiana       | Sweetbay Magnolia    | 3  |     |       |    | 3  |  |
| Rosa palustris            | Swamp Rose           | 5  |     |       |    | 5  |  |
| Rhododendron viscosum     | Swamp Azalea         |    |     |       |    | 0  |  |
| Viburnum cassinoides      | Northern Wild Raisin |    |     |       |    | 0  |  |
| Hibiscus moscheutos       | Eastern Rose Mallow  | 2  |     |       |    | 2  |  |
| Vaccinium corymbosum      | Highbush Blueberry   | 1  |     |       |    | 1  |  |
| Diospyros virginiana      | American Persimmon   | 1  | 3   | 3     |    | 7  |  |
| Lindera benzoin           | Spicebush            |    |     | 5     | 2  | 7  |  |
| Quercus nigra             | Water Oak            |    | 1   |       | 2  | 3  |  |
| Carpinus caroliniana      | Ironwood             |    |     |       | 3  | 3  |  |
| Betula nigra              | River Birch          |    | 2   | 5     | 6  | 13 |  |
| Fraxinus pennsylvanica    | Green Ash            |    | 4   | 2     | 5  | 11 |  |
| Platanus occidentalis     | Sycamore             |    | 3   |       |    | 3  |  |
| Calycanthus floridus      | Sweet-shrub          |    |     | 1     | 3  | 4  |  |
| Hamamelis virgniniana     | Witch-hazel          |    |     |       |    | 0  |  |
| Viburnum dentatum         | Mapleleaf Viburnum   | 1  | 2   | 4     |    | 7  |  |
| Viburnum nudum            | Possumhaw            |    |     |       |    | 0  |  |
| Cornus amomum             | Silky Dogwood        |    |     | 4     |    | 4  |  |
| Xanthorhiza simplicissima | Brook-feather        |    |     | 2     |    | 2  |  |
| Cephalanthus occidentalis | Buttonbush           |    |     | 1     |    | 1  |  |
|                           |                      | 13 | 15  | 27    | 21 | 76 |  |

Total

Table 5. Stem Count Total and Planted by Plot and Species

Appendix D. Stream Assessment Data

#### **Stream Station Photos**



Photo 5. Looking downstream at XS-1



Photo 6. Looking downstream at XS-2

Chapel Creek Stream Restoration NCEEP Project number: 77 Ward Consulting Engineers, P.C.



Photo 7. Looking downstream at XS-3



Photo 8. Looking downstream at XS-4



Photo 9. Looking downstream at XS-5

| Table 6. Visual Morphological Stability Assessment |                                                                             |                      |                  |                     |              |            |  |  |  |  |  |
|----------------------------------------------------|-----------------------------------------------------------------------------|----------------------|------------------|---------------------|--------------|------------|--|--|--|--|--|
| Chapel Creek Stream Restoration-Project N0. 77     |                                                                             |                      |                  |                     |              |            |  |  |  |  |  |
|                                                    | Reach 1 (Restor                                                             | ration): (961        | feet)            |                     |              |            |  |  |  |  |  |
|                                                    |                                                                             | (# Stable)           | <b>T</b> ( 1     | Total               | 0/           | <b>F</b> ( |  |  |  |  |  |
|                                                    |                                                                             | Number<br>Performing | 1 otal<br>number | Number<br>/ feet in | %<br>Perform | Perform    |  |  |  |  |  |
| Feature                                            |                                                                             | as                   | per              | unstable            | in Stable    | Mean or    |  |  |  |  |  |
| Category                                           | Metric (per As-built and reference baselines)                               | Intended             | As-built         | state               | Condition    | Total      |  |  |  |  |  |
| A.                                                 | 1. Present?                                                                 | 18                   | 18               | NA                  | 100%         |            |  |  |  |  |  |
| Riffles                                            | 2. Armor stable (e.g.no displacement?)                                      | 18                   | 18               | NA                  | 100%         |            |  |  |  |  |  |
|                                                    | 3. Facet grade appears stable?                                              | 17                   | 18               | NA                  | 94%          |            |  |  |  |  |  |
|                                                    | 4. Minimal evidence of embedding/fining?                                    | 18                   | 18               | NA                  | 100%         |            |  |  |  |  |  |
|                                                    | 5. Length appropriate?                                                      | 17                   | 18               | NA                  | 94%          | 98%        |  |  |  |  |  |
| B.<br>Pools                                        | 1. Present? (e.g. not subject to severe aggrad.<br>Or migrat.?)             | 17                   | 17               | NA                  | 100%         |            |  |  |  |  |  |
|                                                    | 2. Sufficiently deep (Max. Pool D:Mean<br>Bkf>1.6?)                         | 17                   | 17               | NA                  | 100%         |            |  |  |  |  |  |
|                                                    | 3. Length appropriate?                                                      | 17                   | 17               | NA                  | 100%         | 100%       |  |  |  |  |  |
| C.<br>Thalweg                                      | 1. Upstream of meander bend (run/inflection) centering?                     | 18                   | 18               | NA                  | 100%         |            |  |  |  |  |  |
|                                                    | 2. Downstream of meander (glide/inflection) centering?                      | 18                   | 18               | NA                  | 100%         | 100%       |  |  |  |  |  |
| D.<br>Meanders                                     | 1. Outer bend in state of limited/controlled erosion?                       | 12                   | 17               | NA                  | 71%          |            |  |  |  |  |  |
|                                                    | 2. Of those eroding, # w/concomitant point bar formation?                   | 1                    | 5                | NA                  | 20%          |            |  |  |  |  |  |
|                                                    | 3. Apparent Rc within spec?                                                 | 17                   | 17               | NA                  | 100%         |            |  |  |  |  |  |
|                                                    | 4. Sufficient floodplain access and relief?                                 | 17                   | 17               | NA                  | 100%         | 73%        |  |  |  |  |  |
| E.<br>Bed                                          | 1. General channel bed aggradation areas (bar formation)                    | NA                   | NA               | 0                   | 100%         |            |  |  |  |  |  |
| General                                            | 2. Channel bed degradation-areas of increasing downcutting of head cutting? | NA                   | NA               | 0                   | 100%         | 100%       |  |  |  |  |  |
| F.<br>Bank                                         | 1. Actively eroding, wasting, or slumping bank?                             | NA                   | NA               | 7/70                | 96%          | 96%        |  |  |  |  |  |
| G.                                                 | 1. Free of back or arm scour?                                               | 8                    | 8                | NA                  | 100%         |            |  |  |  |  |  |
| Cross                                              | 2. Height appropriate?                                                      | 8                    | 8                | NA                  | 100%         |            |  |  |  |  |  |
| sills,                                             | 3. Angle and geometry appear appropriate?                                   | 8                    | 8                | NA                  | 100%         |            |  |  |  |  |  |
| single<br>wing<br>vanes                            | 4. Free of piping or other structural failures?                             | 8                    | 8                | NA                  | 100%         | 100%       |  |  |  |  |  |
| H.                                                 | 1. Free of scour?                                                           | 1                    | 1                | NA                  | 100%         |            |  |  |  |  |  |
| Wads/<br>Boulders                                  | 2. Footing stable?                                                          | 1                    | 1                | NA                  | 100%         | 100%       |  |  |  |  |  |

Table 6. Visual Morphological Stability Assessment

| Table 7. Verification of Bankfull Events           Chanel Creek Stream Restoration-Project No. 77 |                     |                                                         |         |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------|---------------------|---------------------------------------------------------|---------|--|--|--|--|--|--|
|                                                                                                   | SICCK Stream Restor |                                                         |         |  |  |  |  |  |  |
| Date of Data Collection                                                                           | Date of Occurrence  | Method                                                  | Photo # |  |  |  |  |  |  |
| September 2008                                                                                    | August 27, 2008     | 4.25 inches of rain.                                    | N/A     |  |  |  |  |  |  |
| September 2008                                                                                    | September 6, 2008   | Tropical Storm Hanna:<br>4.8 inches of rain in 8 hours. | N/A     |  |  |  |  |  |  |

Table 7. Verification of Bankfull Events

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |             |                     |           |            |         | Fig                   | jure 3. | Cross Section 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---------|-------------|---------------------|-----------|------------|---------|-----------------------|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Project:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Chapel Cre           | ek      |             | 10/0                | Sun       | nmary (ban | kfull)  |                       | 10/5    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Cross Sectio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | on: Cross Secti      | ion 1   | A (DI       | MY0                 | MY1       | MY2        | MY3     | MY4                   | MY5     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Feature<br>Station:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Rime<br>3±27         |         | A (Br       | F) 30.6<br>(F) 10.0 | 29.2      |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Date:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 9/17/09              |         | Max         | 2.4                 | 2.3       |            |         |                       |         | A STREAM CONTRACTOR OF |
| Crew:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | RL,BW,SV,            | RW      | Mear        | d 1.5               | 1.5       |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         | W/D         | 12.9                | 12.6      |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Station                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | MY0-2008             | Station | MY1-2009    | oc Station          | MY3-2010  | Notos      | Station | MY4-2011<br>Elevation | Notoc   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 266.3 CS1LP          | 0.00    | 266.32 CS1L | P                   | Lievation | NULES      | Station | Lievation             | NULES   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 0.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 266.18               | 18.18   | 265.11      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 17.02                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 265.02               | 29.77   | 265.02      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 44.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 265.04               | 44.34   | 265.24      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 60.68                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 265.73<br>266.20 PKE | 61.77   | 265.73      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 86.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 264.74               | 78.71   | 266.05      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 89.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 264.37               | 82.59   | 266.26 BKF  |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 89.64                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 264.12               | 84.02   | 265.61      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 91.09                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 264.07               | 86.10   | 264.76      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 92.6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 263.89 1 W           | 88.63   | 264.47      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 95.18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 264.28               | 91.09   | 264.06      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 96.67                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 264.35               | 92.55   | 263.95 TW   |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 99.42                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 265.03               | 94.36   | 264.05      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 102.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 266.48 BKF           | 95.80   | 264.36      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 122.07                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 267.18               | 98.88   | 264.98      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 129.16                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 267.75               | 102.19  | 266.45 BKF  |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 162.74                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 269.39               | 111.02  | 266.62      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 169.8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 269.71 CS1RP         | 125.08  | 267.42      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 155.50  | 268.91      |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      | 169.83  | 269.68 CS1F | Р                   |           |            |         |                       |         | Photo of XS-1, looking in the downstream direction                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |             |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |             |                     |           |            |         | Cross                 | Section | 1 Station 3+27 Riffle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 271 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |         |             |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 269 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                      |         |             |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                      |         |             |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                      |         |             |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                      |         |             |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| vation (Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                      |         |             |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Elevation (Fee                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                      |         |             |                     |           |            |         |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| - 267 - 267 - 266 - 266 - 267 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 - 266 |                      |         |             |                     |           |            | •       |                       | -       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 267 -<br>267 -<br>266 -<br>265 -<br>264 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      |         |             |                     |           |            | •       |                       |         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 267 -<br>266 -<br>265 -<br>264 -<br>263 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                      | 20      |             | ,<br>40             |           | 6          | •       |                       | 80      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 267 -<br>266 -<br>265 -<br>264 -<br>263 -<br>263 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                      | 20      |             | ,<br>40             |           | ,          | •       |                       | 80      | 100 120 140 160 180<br>Station (Feet)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |







![](_page_27_Figure_0.jpeg)

![](_page_28_Figure_0.jpeg)

## Figure 8. Chapel Creek MY-01 Longitudinal Profile

| Figure 9. Pebble Count-Cross Section 1 |               |                  |        |          |        |           |           |              |  |  |  |
|----------------------------------------|---------------|------------------|--------|----------|--------|-----------|-----------|--------------|--|--|--|
| Project:                               | Chapel Creek  | , Chapel Hill, I | NC     |          |        | Date:     | 9/17/2009 | )            |  |  |  |
| Location:                              | CS-1          |                  |        |          |        |           |           |              |  |  |  |
|                                        |               |                  |        | Particle | Counts |           |           |              |  |  |  |
| Inches                                 | Particle      | Millimeter       |        | Riffles  | Pools  | Total No. | Item %    | % Cumulative |  |  |  |
|                                        | Silt/Clay     | < 0.062          | S/C    | 0        | 0      | 0         | 0%        | 0%           |  |  |  |
|                                        | Very Fine     | .062125          | S      | 0        | 0      | 0         | 0%        | 0%           |  |  |  |
|                                        | Fine          | .12525           | Α      | 0        | 0      | 0         | 0%        | 0%           |  |  |  |
|                                        | Medium        | .2550            | N      | 0        | 0      | 0         | 0%        | 0%           |  |  |  |
|                                        | Coarse        | .50 - 1.0        | D      | 2        | 0      | 2         | 2%        | 2%           |  |  |  |
| .0408                                  | Very Coarse   | 1.0 - 2.0        | S      | 1        | 0      | 1         | 1%        | 3%           |  |  |  |
| .0816                                  | Very Fine     | 2.0 - 4.0        |        | 0        | 0      | 0         | 0%        | 3%           |  |  |  |
| .1622                                  | Fine          | 4.0 - 5.7        | G      | 0        | 0      | 0         | 0%        | 3%           |  |  |  |
| .2231                                  | Fine          | 5.7 - 8.0        | R      | 1        | 0      | 1         | 1%        | 4%           |  |  |  |
| .3144                                  | Medium        | 8.0 - 11.3       | A      | 0        | 0      | 0         | 0%        | 4%           |  |  |  |
| .4463                                  | Medium        | 11.3 - 16.0      | V      | 0        | 0      | 0         | 0%        | 4%           |  |  |  |
| .6389                                  | Coarse        | 16.0 - 22.6      | E      | 2        | 0      | 2         | 2%        | 6%           |  |  |  |
| .89 - 1.26                             | Coarse        | 22.6 - 32.0      | L      | 9        | 0      | 9         | 9%        | 14%          |  |  |  |
| 1.26 - 1.77                            | Very Coarse   | 32.0 - 45.0      | S      | 18       | 0      | 18        | 17%       | 32%          |  |  |  |
| 1.77 - 2.5                             | Very Coarse   | 45.0 - 64.0      |        | 34       | 0      | 34        | 33%       | 64%          |  |  |  |
| 2.5 - 3.5                              | Small         | 64 - 90          | С      | 22       | 0      | 22        | 21%       | 86%          |  |  |  |
| 3.5 - 5.0                              | Small         | 90 - 128         | 0      | 8        | 0      | 8         | 8%        | 93%          |  |  |  |
| 5.0 - 7.1                              | Large         | 128 - 180        | В      | 4        | 0      | 4         | 4%        | 97%          |  |  |  |
| 7.1 - 10.1                             | Large         | 180 - 256        | L      | 2        | 0      | 2         | 2%        | 99%          |  |  |  |
| 10.1 - 14.3                            | Small         | 256 - 362        | В      | 1        | 0      | 1         | 1%        | 100%         |  |  |  |
| 14.3 - 20                              | Small         | 362 - 512        | Ŀ      | 0        | 0      | 0         | 0%        | 100%         |  |  |  |
| 20 - 40                                | Medium        | 512 - 1024       | D      | 0        | 0      | 0         | 0%        | 100%         |  |  |  |
| 40 - 80                                | Lrg- Very Lrg | 1024 - 2048      | R      | 0        | 0      | 0         | 0%        | 100%         |  |  |  |
|                                        | Bedrock       |                  | BDRK   | 0        | 0      | 0         | 0%        | 100%         |  |  |  |
|                                        |               |                  | Totals | 104      | 0      | 104       | 100%      | 100%         |  |  |  |

| d16  | d35  | d50  | d84  | d95   |
|------|------|------|------|-------|
| 33.2 | 46.9 | 55.6 | 88.1 | 151.4 |

![](_page_29_Figure_2.jpeg)

| Figure 10. Pebble Count-Cross Section 2 |               |                  |           |         |       |           |           |              |  |
|-----------------------------------------|---------------|------------------|-----------|---------|-------|-----------|-----------|--------------|--|
| Project:                                | Chapel Creek  | , Chapel Hill, I | NC        |         |       | Date:     | 9/17/2009 | )            |  |
| Location:                               | CS-2          |                  |           |         |       |           |           |              |  |
| Particle Counts                         |               |                  |           |         |       |           |           |              |  |
| Inches                                  | Particle      | Millimeter       |           | Riffles | Pools | Total No. | Item %    | % Cumulative |  |
|                                         | Silt/Clay     | < 0.062          | S/C       | 0       | 0     | 0         | 0%        | 0%           |  |
|                                         | Very Fine     | .062125          | S         | 0       | 0     | 0         | 0%        | 0%           |  |
|                                         | Fine          | .12525           | Α         | 0       | 0     | 0         | 0%        | 0%           |  |
|                                         | Medium        | .2550            | N         | 1       | 0     | 1         | 1%        | 1%           |  |
|                                         | Coarse        | .50 - 1.0        | D         | 6       | 0     | 6         | 6%        | 7%           |  |
| .0408                                   | Very Coarse   | 1.0 - 2.0        | S         | 6       | 0     | 6         | 6%        | 13%          |  |
| .0816                                   | Very Fine     | 2.0 - 4.0        |           | 0       | 0     | 0         | 0%        | 13%          |  |
| .1622                                   | Fine          | 4.0 - 5.7        | G         | 0       | 0     | 0         | 0%        | 13%          |  |
| .2231                                   | Fine          | 5.7 - 8.0        | R         | 0       | 0     | 0         | 0%        | 13%          |  |
| .3144                                   | Medium        | 8.0 - 11.3       | Α         | 0       | 0     | 0         | 0%        | 13%          |  |
| .4463                                   | Medium        | 11.3 - 16.0      | V         | 0       | 0     | 0         | 0%        | 13%          |  |
| .6389                                   | Coarse        | 16.0 - 22.6      | ::::E:::: | 3       | 0     | 3         | 3%        | 16%          |  |
| .89 - 1.26                              | Coarse        | 22.6 - 32.0      | L         | 2       | 0     | 2         | 2%        | 17%          |  |
| 1.26 - 1.77                             | Very Coarse   | 32.0 - 45.0      | S         | 18      | 0     | 18        | 17%       | 35%          |  |
| 1.77 - 2.5                              | Very Coarse   | 45.0 - 64.0      |           | 29      | 0     | 29        | 28%       | 63%          |  |
| 2.5 - 3.5                               | Small         | 64 - 90          | С         | 25      | 0     | 25        | 24%       | 87%          |  |
| 3.5 - 5.0                               | Small         | 90 - 128         | O         | 6       | 0     | 6         | 6%        | 93%          |  |
| 5.0 - 7.1                               | Large         | 128 - 180        | В         | 3       | 0     | 3         | 3%        | 96%          |  |
| 7.1 - 10.1                              | Large         | 180 - 256        | L         | 2       | 0     | 2         | 2%        | 98%          |  |
| 10.1 - 14.3                             | Small         | 256 - 362        | В         | 1       | 0     | 1         | 1%        | 99%          |  |
| 14.3 - 20                               | Small         | 362 - 512        | L         | 0       | 0     | 0         | 0%        | 99%          |  |
| 20 - 40                                 | Medium        | 512 - 1024       | D         | 1       | 0     | 1         | 1%        | 100%         |  |
| 40 - 80                                 | Lrg- Very Lrg | 1024 - 2048      | R         | 0       | 0     | 0         | 0%        | 100%         |  |
|                                         | Bedrock       |                  | BDRK      | 0       | 0     | 0         | 0%        | 100%         |  |
|                                         |               |                  | Totals    | 103     | 0     | 103       | 100%      | 100%         |  |

| d16  | d35  | d50  | d84  | d95   |
|------|------|------|------|-------|
| 24.4 | 45.0 | 55.2 | 86.4 | 160.1 |

![](_page_30_Figure_2.jpeg)

| Figure 11. Pebble Count-Cross Section 4 |                 |                  |                 |         |       |           |           |              |  |  |
|-----------------------------------------|-----------------|------------------|-----------------|---------|-------|-----------|-----------|--------------|--|--|
| Project:                                | Chapel Creek    | , Chapel Hill, I | NC              |         |       | Date:     | 9/17/2009 | )            |  |  |
| Location:                               | CS-4            |                  |                 |         |       |           |           |              |  |  |
|                                         | Particle Counts |                  |                 |         |       |           |           |              |  |  |
| Inches                                  | Particle        | Millimeter       |                 | Riffles | Pools | Total No. | Item %    | % Cumulative |  |  |
|                                         | Silt/Clay       | < 0.062          | S/C             | 0       | 0     | 0         | 0%        | 0%           |  |  |
|                                         | Very Fine       | .062125          | S               | 0       | 0     | 0         | 0%        | 0%           |  |  |
|                                         | Fine            | .12525           | Α               | 0       | 0     | 0         | 0%        | 0%           |  |  |
|                                         | Medium          | .2550            | N               | 2       | 0     | 2         | 2%        | 2%           |  |  |
|                                         | Coarse          | .50 - 1.0        | D               | 1       | 0     | 1         | 1%        | 3%           |  |  |
| .0408                                   | Very Coarse     | 1.0 - 2.0        | S               | 0       | 0     | 0         | 0%        | 3%           |  |  |
| .0816                                   | Very Fine       | 2.0 - 4.0        |                 | 0       | 0     | 0         | 0%        | 3%           |  |  |
| .1622                                   | Fine            | 4.0 - 5.7        | G               | 0       | 0     | 0         | 0%        | 3%           |  |  |
| .2231                                   | Fine            | 5.7 - 8.0        | R               | 0       | 0     | 0         | 0%        | 3%           |  |  |
| .3144                                   | Medium          | 8.0 - 11.3       | Α               | 0       | 0     | 0         | 0%        | 3%           |  |  |
| .4463                                   | Medium          | 11.3 - 16.0      | V               | 0       | 0     | 0         | 0%        | 3%           |  |  |
| .6389                                   | Coarse          | 16.0 - 22.6      | E               | 0       | 0     | 0         | 0%        | 3%           |  |  |
| .89 - 1.26                              | Coarse          | 22.6 - 32.0      | L               | 2       | 0     | 2         | 2%        | 5%           |  |  |
| 1.26 - 1.77                             | Very Coarse     | 32.0 - 45.0      | S               | 8       | 0     | 8         | 8%        | 13%          |  |  |
| 1.77 - 2.5                              | Very Coarse     | 45.0 - 64.0      |                 | 37      | 0     | 37        | 37%       | 50%          |  |  |
| 2.5 - 3.5                               | Small           | 64 - 90          | С               | 31      | 0     | 31        | 31%       | 80%          |  |  |
| 3.5 - 5.0                               | Small           | 90 - 128         | 0               | 8       | 0     | 8         | 8%        | 88%          |  |  |
| 5.0 - 7.1                               | Large           | 128 - 180        | В               | 4       | 0     | 4         | 4%        | 92%          |  |  |
| 7.1 - 10.1                              | Large           | 180 - 256        | · · · · · · · . | 6       | 0     | 6         | 6%        | 98%          |  |  |
| 10.1 - 14.3                             | Small           | 256 - 362        | В               | 1       | 0     | 1         | 1%        | 99%          |  |  |
| 14.3 - 20                               | Small           | 362 - 512        | L               | 1       | 0     | 1         | 1%        | 100%         |  |  |
| 20 - 40                                 | Medium          | 512 - 1024       | D               | 0       | 0     | 0         | 0%        | 100%         |  |  |
| 40 - 80                                 | Lrg- Very Lrg   | 1024 - 2048      | R               | 0       | 0     | 0         | 0%        | 100%         |  |  |
|                                         | Bedrock         |                  | BDRK            | 0       | 0     | 0         | 0%        | 100%         |  |  |
|                                         |                 |                  | Totals          | 101     | 0     | 101       | 100%      | 100%         |  |  |

| d16  | d35  | d50  | d84   | d95   |
|------|------|------|-------|-------|
| 46.6 | 56.5 | 64.4 | 108.2 | 217.4 |

![](_page_31_Figure_2.jpeg)

| Figure 12. Pebble Count-Cross Section 5 |                 |                  |          |         |       |           |           |              |  |  |
|-----------------------------------------|-----------------|------------------|----------|---------|-------|-----------|-----------|--------------|--|--|
| Project:                                | Chapel Creek    | , Chapel Hill, I | NC       |         |       | Date:     | 9/17/2009 | )            |  |  |
| Location:                               | CS-5            |                  |          |         |       |           |           |              |  |  |
|                                         | Particle Counts |                  |          |         |       |           |           |              |  |  |
| Inches                                  | Particle        | Millimeter       |          | Riffles | Pools | Total No. | Item %    | % Cumulative |  |  |
|                                         | Silt/Clay       | < 0.062          | S/C      | 0       | 0     | 0         | 0%        | 0%           |  |  |
|                                         | Very Fine       | .062125          | S        | 0       | 0     | 0         | 0%        | 0%           |  |  |
|                                         | Fine            | .12525           | Α        | 0       | 0     | 0         | 0%        | 0%           |  |  |
|                                         | Medium          | .2550            | N        | 7       | 0     | 7         | 7%        | 7%           |  |  |
|                                         | Coarse          | .50 - 1.0        | D        | 13      | 0     | 13        | 13%       | 19%          |  |  |
| .0408                                   | Very Coarse     | 1.0 - 2.0        | S        | 11      | 0     | 11        | 11%       | 30%          |  |  |
| .0816                                   | Very Fine       | 2.0 - 4.0        |          | 0       | 0     | 0         | 0%        | 30%          |  |  |
| .1622                                   | Fine            | 4.0 - 5.7        | G        | 1       | 0     | 1         | 1%        | 31%          |  |  |
| .2231                                   | Fine            | 5.7 - 8.0        | R        | 1       | 0     | 1         | 1%        | 32%          |  |  |
| .3144                                   | Medium          | 8.0 - 11.3       | Α        | 1       | 0     | 1         | 1%        | 33%          |  |  |
| .4463                                   | Medium          | 11.3 - 16.0      | V        | 8       | 0     | 8         | 8%        | 41%          |  |  |
| .6389                                   | Coarse          | 16.0 - 22.6      | :E       | 9       | 0     | 9         | 9%        | 50%          |  |  |
| .89 - 1.26                              | Coarse          | 22.6 - 32.0      | L        | 18      | 0     | 18        | 17%       | 67%          |  |  |
| 1.26 - 1.77                             | Very Coarse     | 32.0 - 45.0      | S        | 8       | 0     | 8         | 8%        | 75%          |  |  |
| 1.77 - 2.5                              | Very Coarse     | 45.0 - 64.0      |          | 13      | 0     | 13        | 13%       | 87%          |  |  |
| 2.5 - 3.5                               | Small           | 64 - 90          | С        | 6       | 0     | 6         | 6%        | 93%          |  |  |
| 3.5 - 5.0                               | Small           | 90 - 128         | 0        | 3       | 0     | 3         | 3%        | 96%          |  |  |
| 5.0 - 7.1                               | Large           | 128 - 180        | В        | 3       | 0     | 3         | 3%        | 99%          |  |  |
| 7.1 - 10.1                              | Large           | 180 - 256        | <b>L</b> | 1       | 0     | 1         | 1%        | 100%         |  |  |
| 10.1 - 14.3                             | Small           | 256 - 362        | В        | 0       | 0     | 0         | 0%        | 100%         |  |  |
| 14.3 - 20                               | Small           | 362 - 512        | L        | 0       | 0     | 0         | 0%        | 100%         |  |  |
| 20 - 40                                 | Medium          | 512 - 1024       | D        | 0       | 0     | 0         | 0%        | 100%         |  |  |
| 40 - 80                                 | Lrg- Very Lrg   | 1024 - 2048      | R        | 0       | 0     | 0         | 0%        | 100%         |  |  |
|                                         | Bedrock         |                  | BDRK     | 0       | 0     | 0         | 0%        | 100%         |  |  |
|                                         |                 |                  | Totals   | 103     | 0     | 103       | 100%      | 100%         |  |  |

| d16 | d35  | d50  | d84  | d95   |
|-----|------|------|------|-------|
| 0.9 | 12.3 | 22.3 | 58.9 | 113.4 |

![](_page_32_Figure_2.jpeg)